Rita is making a small sign in the shape of a triangle. She wants the base length of the triangle to be 4 inches. The area of the sign must be at least 16 square inches. Write an inequality that describes the possible heights (in inches) of the triangle. Use h for height.

Respuesta :

Answer:

The value of h must be greater than or equal to 8 inches

The minimum value of h is 8 inches

Step-by-step explanation:

Let

h ----> the possible heights (in inches) of the triangle

we know that

The area of triangle is equal to

[tex]A=\frac{1}{2}bh[/tex]

where

b is the base length

h is the height

In this problem we have

[tex]b=4\ in[/tex]

Remember that the word "at least" means "greater than or equal to"

so

[tex]A\geq 16\ in^2[/tex]

The inequality that represent this problem is

[tex]\frac{1}{2}bh\geq 16[/tex]

substitute the value of b

[tex]\frac{1}{2}(4)h\geq 16[/tex]

[tex]2h\geq 16[/tex]

[tex]h\geq 8\ in[/tex]

The value of h must be greater than or equal to 8 inches

The minimum value of h is 8 inches