Answer:
[tex]k = 9876 N/m[/tex]
Explanation:
As per energy conservation we know that
initial total gravitational potential energy = final spring potential energy
so we have
[tex]mg(h + x) = \frac{1}{2}kx^2[/tex]
also we know that maximum acceleration will be 5.3 g
so it is given as
[tex]a = \frac{k}{m} x[/tex]
so we have
[tex]x = \frac{ma}{k} = \frac{5.3 mg}{k}[/tex]
[tex]mg(h + \frac{5.3 mg}{k}) = \frac{1}{2}k(\frac{5.3mg}{k})^2[/tex]
[tex]mg(h + \frac{5.3 mg}{k}) = \frac{14.045(mg)^2}{k}[/tex]
[tex]h + \frac{5.3mg}{k} = \frac{14.045 mg}{k}[/tex]
[tex]h = \frac{8.745mg}{k}[/tex]
[tex]k = \frac{8.745 (1439)(9.81)}{12.5}[/tex]
[tex]k = 9876 N/m[/tex]