Answer:
a = αR
Then We apply the Newton's second law of motion:
∑ F = ma
F - mg sinθ - f = ma.
F - mg sinθ - μmg cosθ = ma
Using given data we have:
F - 3217 = 470a ........................... (1)
Apply the Newton's law for rotation:
∑τ = I α
FR - (mg sinθ)R = [tex](\frac{mR^2}{2}+mR^2)\frac{a}{R}[/tex]
then: F - mg sinθ = 3ma / 2.
F - 2774 = 705a .......................... (2)
solving 1 and 2 we get:
F = 4103 N
a = 1.885 m/s²
b) In this case the time is given by:
t = [tex]\sqrt{\frac{2d}{a}}[/tex] it comes from: d = [tex]v_ot+\frac{1}{2}at^2[/tex] starting from rest vo = 0
t = [tex]\sqrt{\frac{2*9}{1.885}[/tex] = 3.09 s