Answer:54 th
Step-by-step explanation:
Given
Poster has an area of [tex]A=1\ ft^2[/tex]
Size of photo is [tex]\frac{1}{3}\ ft\times \frac{3}{5}\ ft[/tex]
and we know
[tex]1\ ft\ \text{is equal to}\ 0.3048\ m[/tex]
so [tex]\frac{1}{3}\ ft[/tex] is [tex]0.1016\ m[/tex]
[tex]\frac{3}{5}\ ft[/tex] is [tex]0.1828\ m[/tex]
So area of photo is
[tex]a=0.1016\times 0.1828[/tex]
[tex]a=0.01858\ m^2[/tex]
ratio of area of photo and poster is
[tex]\Rightarrow \frac{a}{A}=\frac{0.01858}{1}\approx \frac{1}{53.819}\approx \frac{1}{54}[/tex]
So photo will acquire [tex]54^{th}[/tex] Part of poster