A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference between the plates is 275 V. Assume a plate separation of d 1.53 cm and a plate area of A = 25.0 cm2. when the battery is removed, the capacitor is plunged into a container of distilled water. Assume distilled water is an insulator with a dielectric constant of 80.0
(a) Calculate the charge on the plates in pC) before and after the capacitor is submerged. (Enter the magnitudes.)
before Qi = _____
after Qf = ______
(b) Determine the capacitance (in F) and potential difference (in V) after immersion
(c) Determine the change in energy (in n]) of the capacitor Δυ = nJ
(d) What If? Repeat parts (a) through (c) of the problem in the case that the capacitor is immersed in distilled water while still connected to the 275 V potential difference
Calculate the charge on the plates (in pC) before and after the capacitor is submerged. (Enter the magnitudes.)
Determine the capacitance (in F) and potential difference (in V) after immersion
Determine the change in energy (in nJ) of the capacitor AU nJ

Respuesta :

Answer:

a)  Q = 397.57 pC , Q = 3.18 104 pC , b) C = 1.157 10⁻¹⁰ F ,  V = 3.4375 V ,

c)  U = 54.7 nJ ,  d) ΔU = 54 nJ,

Explanation:

a) The capacity of a capacitor is defined

        C = Q / V

        Q = C V

         

can also be calculated using geometry consideration

        C = e or A / d

         

we reduce to the SI system

       A = 25.0 cm² (1 m / 10² cm) 2 = 25.0 10⁻⁴ m²

       d = 1.53 cm = 1.53 10⁻² m

we substitute

         Q = eo A / d V

         Q = 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻² 275

         Q = 3.9757 10⁻¹⁰ C

         

let's reduce to pC

         Q = 3.9757 10⁻¹⁰ C (10¹² pC / 1 C)

          Q = 397.57 pC

when the capacitor is introduced into the water the dielectric constant is different

           Q = k Q₀

           Q = 80 397.57

           Q = 3.18 104 pC

b) Find capacitance and voltage after submerged in water

           C = k C₀

           C = 80 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²

           C = 1.157 10⁻¹⁰ F

           V = Vo / k

            V = 275/80

            V = 3.4375 V

c) The stored energy is

             U = ½ C V²

              U = ½, 85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²     275²

             U = 5.47 10⁻⁸ J

let's reduce to nJ

              109 nJ = 1 J

               U = 54.7 nJ

d) energy after submerging

             U = ½ (kCo) (Vo / k) 2

             U = ½ Co Vo2 / k

             U = U₀ / k

             U = 54.7 / 80 nJ

              U = 0.68375 nJ

the energy change is

         ΔU = U₀ -U

          ΔU = 54.7 - 0.687375

           

(a) Charge on the plate before immersion, Qi is 5.258 x 10⁻³ pC and the charge after, Qf is 0.421 pC.

(b) The capacitance and potential difference after immersion is 1.157 x 10⁻¹⁰ F and 3.44 V respectively.

(c) The change in energy of the capacitor is 54.02 nJ.

Charge on the plate before immersion

The charge on the plate is calculated as follows;

[tex]Q =\frac{\varepsilon _o A}{Vd} \\\\Q_i = \frac{8.85 \times 10^{-12} \times (25 \times 10^{-4}) }{275\times 0.0153} \\\\Q_i = 5.258 \times 10^{-15} \ C\\\\Q_i = 5.258 \times 10^{-3} pC[/tex]

Charge on the plate after immersion

[tex]Q_f = k Q_i\\\\Q_f = 80 \times 5.258 \times 10^{-3} \ pC= 0.421 \ pC[/tex]

Capacitance and potential difference after immersion

[tex]C = \frac{k\varepsilon _o A}{d} \\\\C = \frac{80 \times 8.85 \times 10^{-12} \times (25\times 10^{-4} )}{0.0153} \\\\C = 1.157 \times 10^{-10} \ F[/tex]

[tex]V = \frac{V_0}{k}\\\\V = \frac{275}{80} \\\\V = 3.44 \ V[/tex]

Change in energy of the capacitor

The initial energy of the capacitor is calculated as follows;

[tex]U_i = \frac{1}{2} CV^2\\\\U_ i = \frac{1}{2} \times (\frac{\varepsilon _o A}{d} )V^2\\\\U_i = \frac{1}{2} \times (\frac{8.85\times 10^{-12} \times 25 \times 10^{-4}}{0.0153} )\times 275^2\\\\U_i = 5.47 \times 10^{-8} \ J\\\\U_i = 54.7 \ nJ[/tex]

The final energy of the capacitor is calculated as follows;

[tex]U_f = \frac{1}{2} (kC) \times (\frac{V}{k} )^2\\\\U_f = \frac{1}{2} C\times \frac{V^2}{k} \\\\U_f = \frac{1}{k} (\frac{1}{2} CV^2)\\\\U_f = \frac{U_i}{k} \\\\U_f = \frac{54.7 \ nJ}{80} \\\\U_f = 0.68 \ nJ[/tex]

Change in energy is calculated as follows;

[tex]\Delta U = U_i - U_f \\\\\Delta U = 54.7 \ nJ \ - \ 0.68 \ nJ\\\\\Delta U = 54.02 \ nJ[/tex]

Learn more about energy stored in a capacitor here: https://brainly.com/question/13578522