Respuesta :
a.
y = 15 tan(30°)
y = 15/√3 ≈ 8.66 ft
b.
y = 15 tan(40°) ≈ 12.59 ft
c.
A = 1/2 base x height ≈ 129.9 ft² and 188.8 ft² for 30° and 40°
hope it helps
y = 15 tan(30°)
y = 15/√3 ≈ 8.66 ft
b.
y = 15 tan(40°) ≈ 12.59 ft
c.
A = 1/2 base x height ≈ 129.9 ft² and 188.8 ft² for 30° and 40°
hope it helps
Answer:
A. 8.66 feet
B. 12.59 feet
C. Area of triangle when [tex]\theta=30[/tex] is 129.9 square feet. Area of triangle when [tex]\theta=40[/tex] is 188.85 square feet. Increasing the angle [tex]\theta[/tex] increases the area.
Step-by-step explanation:
The equation that models the height of the triangle is:
[tex]y=15 Tan \theta[/tex]
Where,
- [tex]y[/tex] is the height, and
- [tex]\theta[/tex] is the angle
A.
When [tex]\theta=30[/tex] , the height is:
[tex]y=15Tan30\\y=8.66[/tex]
B. When [tex]\theta=40[/tex\ , the height is:
[tex]y=15Tan40\\y=12.59[/tex]
C. To find the area of the isosceles triangular shaped garden, we use the formula for the area of the triangle:
[tex]A=\frac{1}{2}bh[/tex]
Where,
- A is the area
- b is the base, which is given as 30 feet, and
- h is the height [8.66 feet when the angle is 30 & 12.59 when angle is 40]
When Vance uses [tex]\theta=30[/tex] , the area is:
[tex]A=\frac{1}{2}(30)(8.66)\\A=129.9[/tex] square feet
When Vance uses [tex]\theta=40[/tex] , the area is:
[tex]A=\frac{1}{2}(30)(12.59)\\A=188.85[/tex] square feet
So we see that when the angle is more, the area is also more.