Respuesta :

Answer:

Step-by-step explanation:

Drop an angle bisector from angle C until it intersects AB. Because of the symmetry of the triangles created, you will form two small right angle congruent triangles. Call the point of intersection with AB = D. In other words the bisector of <C is CD.

CB = AC                          Isosceles triangle

CD / CB = Sin(38.5)        

  CD=?

  CB = 35

CD / 35 = Sin(38.5)      Multiply both sides by 35

CD = 35 * sin(38.5)

CD = 21.79

BD/CB  =  Cos(38.5)

BD = CB* Cos(38.5)

BD = 35 * Cos (38.5)

BD = 27.39

Area = CD * BA/2

BA/2 = DB

Area = CD * BD

Area = 21.79 * 27.39

Area = 596.9