2x²yz - 7xy²z + 13xyz² - 6 from 4xyz² + xyz - 6x²yz + 9xy²z
Step-by-step explanation:
We are given with two different polynomials in the question to subtract the second expression with the first. The word from determines that, the second expression should be subtracted by the first. So,
[tex] \sf {2x}^{2} yz - {7xy}^{2}z + {13xyz}^{2} - 6[/tex]
from
[tex] \sf {4xyz}^{2} + xyz - {6x}^{2}yz + {9xy}^{2}z[/tex]
So, now we can solve these,
[tex] \small \sf {4xyz}^{2} + xyz - {6x}^{2}yz + {9xy}^{2}z - ({2x}^{2} yz - {7xy}^{2}z + {13xyz}^{2} - 6)[/tex]
[tex] \small \sf {4xyz}^{2} + xyz - {6x}^{2}yz + {9xy}^{2}z - {2x}^{2} yz + {7xy}^{2}z - {13xyz}^{2} + 6[/tex]
Now, we should group the like terms.
[tex] \small \sf {4xyz}^{2} - {13xyz}^{2} - {6x}^{2}yz - {2x}^{2}yz + {9xy}^{2}z + {7xy}^{2}z + 6 + xyz[/tex]
[tex] \sf { - 9xyz}^{2} - {8x}^{2}yz + {16xy}^{2}z + 6 + xyz[/tex]
Therefore, the final anwer is,
Therefore, the final anwer is,-9xyz² - 8x²yz + 16xy²z + 6 + xyz.